Parsing, Semantic Networks, and Political Authority Using Syntactic Analysis to Extract Semantic Relations from Dutch Newspaper Articles

نویسندگان

  • Wouter van Atteveldt
  • Jan Kleinnijenhuis
چکیده

Analysis of political communication is an important aspect of political research. Thematic content analysis has yielded considerable success both with manual and automatic coding, but Semantic Network Analysis has proven more difficult, both for humans and for the computer. This article presents a system for an automated Semantic Network Analysis of Dutch texts. The system automatically extracts relations between political actors based on the output of syntactic analysis of Dutch newspaper articles. Specifically, the system uses pattern matching to find source constructions and determine the semantic agent and patient of relations, and name matching and anaphora resolution to identify political actors. The performance of the system is judged by comparing the extracted relations to manual codings of the same material. Results on the level of measurement indicate acceptable performance. We also estimate performance at the levels of analysis by using a case study of media authority, resulting in good correlations between the theoretical variables derived from the automatic and manual analysis. Finally, we test a number of substantive hypotheses with regression models using the automatic and manual output, resulting in highly similar models in each case. This suggests that our method has sufficient performance to be used to answer relevant political questions in a valid way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Syntactic Analysis to Extract Semantic Relations from Dutch Newspaper Articles

Analysis of political communication is an important aspect of political research. Thematic content analysis has yielded considerable success both with manual and automatic coding, but Semantic Network Analysis has proven more difficult, both for humans and for the computer. This article presents a system for an automated Semantic Network Analysis of Dutch texts. The system automatically extract...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

Good News or Bad News? Conducting sentiment analysis on Dutch text to dinstinguish between positive and negative relations

Many research questions in political communication can be answered by representing text as a network of positive or negative relations between actors and issues. This paper presents a system for automatically determining whether these relations are positive or negative by using techniques from Sentiment Analysis. We used a Machine Learning approach trained on the manually annotated news coverag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009